Hampton Inn \& Suites - National Harbor, MD

Photo courtesy of OTO Development, http://www.otodevelopment.com/

John Pillar

Dr. Memari Thesis Advisor

Technical Report \#1 10/5/06

Executive Summary

Photo courtesy of STV Incorporated, http://www.stvinc.com/
This report is intended to analyze and discuss the structural system used for the Hampton Inn \& Suites in National Harbor, Maryland. It is an eleven story concrete structure designed by STV Incorporated, architect, and Hope Furrer Associates, structural engineer. The hotel is set to open on March 1 ${ }^{\text {st }}, 2008$.

Concrete is traditionally used in buildings such as hotels and housing facilities due to the advantages it has regarding plenum space, simplicity of design, and redundancy of use.

In this report, the building's structural systems are overviewed, and a detailed calculation of each element is included. A single shear wall, column and slab are checked for adequacy in the report, and detailed calculations are included in the appendix at the end.

In order to analyze each element, the building was analyzed using ASCE 7-05 for wind and seismic provisions. For wind, the analytical method was used, and for seismic, the equivalent force method was used.

Table of Contents

Structural Summary..... 1
Code Listings..... 3
Wind Analysis..... 4
Seismic Analysis..... 5
Wind Diagram..... 6
Seismic Diagram..... 7
Spot Checks..... 8
Appendix A..... 11

Structural Summary

Foundations

Foundations consist of spread or strip footings, or a combination of the two, based on the recommendations of the geotechnical report prepared by ECS MidAtlantic, LLC, dated December 15, 2005. Soil bearing capacity is calculated at 4500 psf . Tops of footings are assumed to be 14 '-2" below finished grade, unless noted otherwise. Typical spread footings are centered below columns and range between 7' square to 15 ' square. These footings are up to 4 ' thick under shear walls, while the strip footings are typically 24 " deep and $6^{\prime}-6$ " wide, and span between the spread footings. Sixteen number 5 reinforcing bars are used longitudinally in the strip footings with eight on top and eight on the bottom. Number 4 bars spaced at 12" on center are used transversely for the top and bottom.

Concrete strengths vary according to placement. Footings and walls receive 4000 psi concrete, while slab on grade uses 3500 , both normal weight. Shear walls are to match strengths called out on the column schedule. The slab on grade is reinforced with 6x6-W2.9xW2.9 WWF.

Columns

All columns are 12 "x24" with chamfered edges, where exposed. There are 32 columns which span from the foundation to the roof, over 115 feet, with number 4 ties spaced at 12 inches all the way up. Vertical reinforcing ranges from ten number 11 bars to six number 8 bars. In all cases, the vertical reinforcing is distributed along the 24 " face of the column in two sheets, one on each side. In all cases, class B lap splices are required for vertical splicing. Concrete strength is normal weight 6000 psi from the foundation to the third floor, where it drops to 5000 psi until it reaches the roof. Typical floor to floor heights are close to 10'.

There is a double-height pool structure on the first floor that rests on grade. Because it intersects with two column lines, the two columns start at the second floor and proceed to the roof. They cannot continue down to the foundation, so their weight is picked up by a transfer beam that is 36 " deep, 44 " wide, and heavily reinforced with six number 8 bars on top, ten number 11 bars on the bottom with an additional row of six number 9 bars also on the bottom. The reinforcing is tied together with number 5 closed stirrups spaced at ten inches on center. This transfer beam also frames into to two similar girders, tied into columns, at either end.

The last two columns start at the roof and help hold up a mechanical screen wall. The roof of the screen wall consists of W14x22 curved steel members with 1-1/2" galvanized metal roof deck resting on top.

Floor Slabs

The floor slabs are usually 10-1/2" thick when not near columns. At each column there is a $2-1 / 2^{\prime \prime}$ drop panel to combine for a 13 " slab thickness. A typical drop panel size is $5^{\prime}-6 " x 6^{\prime}-9$ " and accounts for 38 square feet. Steel reinforcing is laid out longitudinally and transversely on both the bottom and top. The slab reinforcing ranges from number 4 bars to number 6 bars spaced approximately 12 inches apart. Where not specified, number 5 bars spaced at 6 " is the minimum required.

For slabs on level 3 and below, concrete strength is normal weight 6000 psi. Slabs resting on the fourth floor and up have a strength of 5000 psi. Minimum reinforcing protection for floor slabs is $3 / 4$ ".

The slabs on this project are considered to act as two way slabs, meaning that they carry load in both lateral directions. The three largest bays have dimensions of 29'x26'-10'. There are no beams spanning between columns in this case. In the largest bay, the drop panels cover roughly 6 feet of the span, or 20.7\%.

Lateral System

The lateral components of this building are comprised of twelve shear walls of varying length. Five of the twelve are aligned with Plan North, while the other seven are aligned plan East-West. Each shear wall is one foot thick and is vertically reinforced with number 5 bars at 18 " on center. They are each tied into the foundation by rebar that matches vertical reinforcing called out in the plans. All rebar is to have class B splices and extend one foot into the foundation with 90° hooks. In most cases, two columns act as bookends for each shear wall. In these cases, the shear wall reinforcement of number 5 bars spaced at 18 inches is continued into the columns and hooked 90°.

The longest shear walls are 23' along grid lines B and C running North to South. In the East-West direction, the longest shear wall is located along grid line 6, and is 19 '-6" long. Nine of the twelve shear walls wrap around the two stair cases and lone elevator shaft that are spaced evenly throughout the building's long dimension.

Code List

Building Code
Maryland Building Performance Standards (MBPS) - based on IBC 2003 and IRC

Structural Concrete Code

The American Concrete Institute (ACI) - sections 301, 318 and 315
Aggregate shall comply with ACI 304, and slump with 211.1
Reinforcing shall comply with ASTM A615, Grade 60

Masonry Code

ACI - section 530.1
Reinforcing shall comply with ASTM A615, Grade 60

Structural Steel Code

Load and Resistance Factor Design Specification (LRFD) conforming with the American Institute of Steel Construction (AISC) specification for structural steel for buildings, and AWS D1.1, latest edition
Connection bolts shall conform to ASTM A325

W shapes, columns	ASTM A992 or ASTM 572-50
S, M, and HP shapes	ASTM A36
column baseplates, web doubler plates	ASTM A992 or ASTM 572-50
channels, tees, bars, angles and plates	ASTM A36
HSS rectangular or square	ASTM A500 - GR. B (Fy=46ksi)
steel pipe	ASTM A500 - GR. B (Fy=42ksi)
anchor rods	ASTM A307, A449 where noted

Load Summary

	Corridor	Storage	Guest	Roof	Canopy
Slab	148	148	148	148	--
M/E/C/L	8	8	8	8	8
Roof	--	--	--	2	2
Insulation	--	--	--	8	8
Total Dead	156	156	156	166	16
Live	100	125	40	30	30
Partition	--	--	20	--	--
Total	256	281	216	196	48

Design Wind Pressure

Design Pressure		」55'			$\perp 178{ }^{\prime}$		
Level	Height	p w-w	p l-w	p roof	p w-w	p l-w	p roof
1	0	8.371749	-4.5166	-18.965	8.147242	-9.5140	-19.789
2	12	8.371749	-4.5166	-15.642	8.147242	-9.5140	
3	22.25	9.399858	-4.5166		9.147781	-9.5140	
4	32.5	10.5014	-4.5166		10.21979	-9.5140	
5	42.75	11.34592	-4.5166		11.04166	-9.5140	
6	53	12.09351	-4.5166		11.76919	-9.5140	
7	63.25	12.681	-4.5166		12.34093	-9.5140	
8	74.25	13.33605	-4.5166		12.97841	-9.5140	
9	84.5	13.8501	-4.5166		13.47868	-9.5140	
10	94.75	14.3201	-4.5166		13.93607	-9.5140	
11	105	14.724	-4.5166		14.32914	-9.5140	
Low Roof	115.25	15.09118	-4.5166		14.68648	-9.5140	
High Roof	130	15.64195	-4.5166		15.22248	-9.5140	

Story Shear and Overturning Moment - Wind

Story Shear	$\perp 55 '$	」178'
Level		
1	8.506319	37.72452
2	7.265814	32.22303
3	7.845411	34.04851
4	8.466408	36.00438
5	8.942505	37.50389
6	9.363954	38.83127
7	10.40455	42.79204
8	10.06444	41.0375
9	10.35424	41.95024
10	10.6192	42.78475
11	10.84689	43.5019
Low Roof	15.90682	63.53848
Total	118.5866	491.9405

Overturning Moment			
Level		$\perp 55$ '	$\perp 178{ }^{\prime}$
	1	51.03792	226.3471
	2	124.4271	551.8193
	3	214.7681	932.0779
	4	318.5486	1354.665
	5	428.1224	1795.499
	6	544.2799	2257.068
	7	715.3131	2941.953
	8	798.8648	3257.351
	9	927.9985	3759.79
	10	1060.592	4273.127
	11	1194.514	4790.647
Low			
Roof		1950.574	7791.406
Total		8329.041	33931.75

Wind load calculations were performed according to ASCE 7-05 using method 2 - analytical procedure. K_{zt} was assumed to be equal to 1.0 and the building was considered enclosed when analyzing the main wind force resisting system (mwfrs) according to case 1. Through seismic calculations, the building was determined to be rigid. Linear interpolation was used where permitted.

Seismic Criteria

Total Weight by Floor		
Floor	Total	
	Weight	Elevation
	1464840	0
2	1472841.5	12
3	1803184	22.25
4	1803184	32.5
5	1803184	42.75
6	1803184	53
7	1803184	63.25
8	1803184	74.25
9	1803184	84.5
10	1803184	94.75
11	1327969	105
Low		
Roof	1055250	115.25
High		
Roof	44464	130
Vertical Distribution of Forces		
Floor High	C_{vx}	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$
Roof	0.00555783	3.56674304
Low		
Roof	0.11505062	73.833832
11	0.13025935	83.5940525
10	0.15740865	101.017135
9	0.13822721	88.7074301
	0.11935803	76.5981204
7	0.09949812	63.8530041
6	0.08140748	52.2433173
5	0.06378575	40.9345602
4	0.04673032	29.9892254
3	0.030397	19.5073017
2	0.01231964	7.90613663
1	0	0
	1	641.750858

[^0]As the vertical distribution of forces shows, seismic analysis was the controlling factor in both directions. That is, the seismic base shear, which is the same in both directions, was larger than either direction of wind base shear. This result is not surprising, as the seismic response is based on the building weight. Concrete buildings tend to carry more mass per story, and consequently are often controlled by seismic design criteria.

The overturning moment also turned out to be larger for seismic than wind. This can be attributed to larger forces being present at higher elevations for the seismic design. The vertical distribution of forces equation attempts to take a whiplash effect into account. As the base of the building moves one way, the top wants to catch up to it. As it does this, the base of the building switches directions and moves back, thus pulling the top of the building back to its original position with much greater force.

Once the seismic and wind forces are determined, the analysis of the lateral elements of the building can begin. Because the seismic load controls, the shear walls will be analyzed according to their relative stiffness within the group using seismic loads.

Wind Analysis Diagram

Seismic Analysis Diagram

Quick Design Spot Checks

Shear Wall Check

Estimates on how much load a certain shear wall absorbs can be made from the principle of relative stiffness, which involves direct shear, torsion and bending. After calculating the center of rigidity and the torsional constant for this building, it became clear that the overall effect of eccentric loading on the center of stiffness had a negligible impact on the outcome of the shear calculation. In fact, calculating each shear wall using the direct shear method brought me to within 99.2\% of the actual shear.

I chose to analyze shear wall 1, as I have designated it:

Multiplying the total seismic force by the ratio of the length of shear wall 1 to the total length of North-South oriented shear walls yielded a tributary shear of 132k. After factoring the reinforcing into shear wall 1, I found that its capacity for shear was $821 k$, which is greater than $132 k$, therefore shear wall 1 is ok. The large difference in the two numbers is to be expected, as the wall essentially acts as an extremely deep beam when subjected to a force along its axis.

Calculations for the shear capacity of shear wall 1 are included in the appendix immediately following this report.

Column Check

Column D-3 is a 12 " $\times 24$ " column with eight number 9 vertical reinforcing bars, 4 in each face. Assuming a cover of 1-1/2" all around, I found the pure axial capacity of the column to be 1788k. Similarly, the pure bending capacity of the column, about an axis perpendicular to the 24 " side, was found to be $410 \mathrm{ft}-\mathrm{k}$. The balanced strain condition is the last point needed to make a preliminary column interaction diagram. After calculating the balanced condition, which yielded 611k of compression and $597.6 \mathrm{ft}-\mathrm{k}$ of bending capacity, the diagram looked like this:

If the actual point lies somewhere inside this conservative area, the column is deemed adequate.

Calculations for the column interaction are included in the appendix immediately following this report.

Punching Shear Check

Punching shear occurs when there is too much load on a slab where it ties in to a column. If the slab is overloaded sufficiently, the connection to the column will effectively punch through the slab from a shear failure. At column B-6 there is a 2-1/2" drop panel which helps reduce the risk of punching shear.

The total slab thickness at B-6 is 13 ", and the tributary area of column B-6 is roughly $237 \mathrm{ft}^{2}$. Through calculations, $\mathrm{Vu}=82 \mathrm{k}$. After checking three different punching shear calculations, the least of which yielded $\mathrm{Vc}=420 \mathrm{k}, \phi \mathrm{Vc}$ was still larger than Vu at 315k.

Slab Check

In order to qualify for using the direct design method of analyzing two-way slabs, the typical bays have to have regularity. That is, the dimensions of each bay in a three bay span cannot vary by more than a code specified distance. For this hotel, I could not find three bays that met the requirement to be analyzed using direct design. Because two way slabs are considered to be very stable in design, I conservatively analyzed a typical bay for one way slab behavior.

The bay under investigation lies between column lines F and G, and between lines 5 and 6 . It is a 20' wide bay that is designed to support the design corridor loading of 100 psf. In addition to the live load, it must support its own dead load of $156 \mathrm{lb} / \mathrm{ft}^{3}$.

The capacity of the slab with its reinforcing was calculated to be $20.15 \mathrm{ft}-\mathrm{k}$, $18.135 \mathrm{ft}-\mathrm{k}$ after the safety factor of .9 was included. This capacity exceeded the design moment of $17.36 \mathrm{ft}-\mathrm{k}$, so the slab is adequate.

Appendix A Table of Contents

Wind Calculations.....1a
Seismic Calculations.....2a
Shear Wall Calculations.....4a
Column Calculations.....6a
Punching Shear Calculations.....10a
Slab Calculations.....11a

Typical Floor.....12a

Wind Calculations

Wind Variables		Velocity Pressures by Floor			qz
Variable	Value	Level	Height	Kz	
h	130	1	0	0.57	12.4032
V	100	2	12	0.57	12.4032
Kd	0.85	3	22.25	0.64	13.9264
I	1	4	32.5	0.715	15.5584
Kzt	1	5	42.75	0.7725	16.8096
GCpi	0.18	6	53	0.8234	17.91718
qh	21.8144	7	63.25	0.8634	18.78758
Iz	0.259931	8	74.25	0.908	19.75808
Q $\perp 178{ }^{\prime}$	0.812881	9	84.5	0.943	20.51968
Q $\perp 55{ }^{\prime}$	0.853623	10	94.75	0.975	21.216
G $\perp 178{ }^{\prime}$	0.821083	11	105	1.0025	21.8144
G $\perp 55{ }^{\prime}$	0.843709	Low Roof	115.25	1.0275	22.3584
		High Roof	130	1.065	23.1744 qh
		Parapet	132	1.07	23.2832

Cp by Wind Direction

	Cp	
	Cp $\perp 55^{\prime}$	$\perp 178$
Windward	0.8	0.8
Leeward	-0.231	-0.5
Side	-0.7	-0.7
	$0-\mathrm{h} / 2-$	
Roof	0.97	-1.04
	$>h / 2-$	
	0.8	

Seismic Calculations

Weight Inputs, Slabs

Floor	Thickness	Material	Area	Area Voids	Approx. Weight
1	10.5	150	9790	2250	989625
2	10.5	150	9790	2700	930562.5
3	10.5	150	9790	750	1186500
4	10.5	150	9790	750	1186500
5	10.5	150	9790	750	1186500
6	10.5	150	9790	750	1186500
7	10.5	150	9790	750	1186500
8	10.5	150	9790	750	1186500
9	10.5	150	9790	750	1186500
10	10.5	150	9790	750	1186500
11	10.5	150	9790	750	1186500
Low Roof	10.5	150	9790	1750	1055250
High Roof	n/a	11.2	3970	0	44464
High Roof	6	150	290	0	21750

Weight Inputs, Columns \& Shearwalls

Mark	Area (ft^{2})	Quantity	Height	Material	Approx. Weight
Numerous	2	32	130	150	1248000
13, J3	2	2	130	150	78000
H1, I1, J1,					
J4	2	4	12	150	14400
G7, F7	2	2	15	150	9000
SW1	23.33	3	130	150	1364805
SW2	12	2	130	150	468000
SW3	23.33	1	130	150	454935
SW4	22.25	1	130	150	433875
SW5	8.5	2	130	150	331500
SW6	19.5	1	130	150	380250
SW7	12	2	130	150	468000

Additional Weight				Amount	Total
Floor	Type	Amount	Type		
1	n/a		n/a		0
2	Partition	64720	Storage	2344	67064
3	Partition	136000	Storage	5469	141469
4	Partition	136000	Storage	5469	141469
5	Partition	136000	Storage	5469	141469
6	Partition	136000	Storage	5469	141469
7	Partition	136000	Storage	5469	141469
8	Partition	136000	Storage	5469	141469
9	Partition	136000	Storage	5469	141469
10	Partition	136000	Storage	5469	141469
11	Partition	136000	Storage	5469	141469

Seismic Inputs
Variable Value

Variable	
S_{s}	0.152
$\mathrm{~S}_{1}$	0.5
$\mathrm{~F}_{\mathrm{a}}$	1.6
$\mathrm{~F}_{\mathrm{v}}$	2.4
I	1
SM_{s}	0.2432
SM_{1}	1.2
SD_{s}	0.16213333
SD_{1}	0.8
R	5
C_{s}	0.03242667

C_{t}	0.02
$\mathrm{~h}_{\mathrm{n}}$	130
x	0.75

X	0.7699943
$\mathrm{~T}_{\mathrm{a}}$	0.98684211
$\mathrm{~T}_{\mathrm{o}}$	4.93421053
$\mathrm{~T}_{\mathrm{s}}$	
$\mathrm{V}(\mathrm{k})$	641.750858

Portion of Columns \& Shearwalls Shared by Floor
Floor Attributed Weight

1	498615
2	475215
3	475215
4	475215
5	475215
6	475215
7	475215
8	475215
9	475215
10	475215
11	475215

Weight Seen by Floor		
Floor High	Weight	Story Shear
Roof	44464	1.44181931
Low		
Roof	1099714	35.6600593
11	2427683	78.7216674
10	4230867	137.192914
9	6034051	195.66416
8	7837235	254.135407
7	9640419	312.606653
6	11443603	371.0779
5	13246787	429.549146
4	15049971	488.020393
3	16853155	546.491639
2	18325996.5	594.25098
1	19790836.5	641.750858

Shear Wall Calculations

Shear wall check

$$
l=23^{\prime}
$$

Total length of shear walls $=112^{\prime} \quad \frac{23}{112}=0.205$ $(0.205)(641.75)=131.6 \mathrm{~K}$ to shear wall 1

Wall reinforcement
From Act $21,7,2,2$.
If $V_{u} \geq 2 A_{C v} \sqrt{f^{\prime}}$, need 2 layers of reinf.

$$
\begin{aligned}
2(12)(23)(12) \sqrt{6000}= & s i 3.1 \mathrm{k}
\end{aligned} \begin{aligned}
& V_{u} \\
& \therefore 2 \text { layers needed }
\end{aligned}
$$

$f_{l_{1}} f_{t}=\frac{A_{s l}}{A_{c_{v}}} \geq 0.0025_{5}$

$$
A_{c v}=144 \mathrm{in}^{2} / \mathrm{ft}(.0025)=0.36 \mathrm{in}^{2} / \mathrm{ft} \mathrm{reg}^{\prime} \mathrm{d}
$$

Assume \#s
Asl $=0.62 \mathrm{in}^{2} / \mathrm{s}, \quad S=$ spacing
$\frac{0.36}{12}=\frac{0.62}{S} \Rightarrow S=20.67^{11} \mathrm{MAX}$
try \#5 @ 18"0.c., both directions

$$
\begin{gathered}
V_{u}=A_{c v}\left(\alpha_{c} \sqrt{f_{c}}+f_{t} f_{y}\right) \quad \frac{h_{w}}{l_{w}}=\frac{130}{23}=5.65>2 \\
A_{c v}=3312 \mathrm{in}^{2} \quad \rho_{t}=0.0043 \\
V_{u}=3312(2 \sqrt{6000}+.0043 .60,000) / 1000=1367.6 \mathrm{k} \\
Q_{n}=0.6(1367.6)=820.55 \mathrm{k}>V_{v} \\
\therefore{ }^{2} \mathrm{k}
\end{gathered}
$$

Shear wall (contd)

$$
\begin{aligned}
& M_{v}=10,366 \mathrm{ft} \cdot \mathrm{k} \\
& P_{u}=160 \mathrm{sk} \\
& C_{v}=\frac{1604}{2}+\frac{10366}{23}=1253 \mathrm{k}(\mathrm{BE}) \\
& A_{g}=23 \mathrm{ft}^{2} \\
& I_{g}=\frac{(23)^{3}}{12}=1014 \mathrm{ft}^{4} \\
& f_{c}=\frac{P u}{A_{g}}+\frac{M v \cdot \frac{h w}{2}}{F_{g}}=\frac{1604}{23}+\frac{10366\left(\frac{23}{2}\right)}{1014}=187 \mathrm{k} / \mathrm{ft}^{2} \\
& 0.2(6)=1.2 \mathrm{klin} 2<1.3 \therefore \text { need boundary element }
\end{aligned}
$$

10-\#9 vert in eachboundery@level 1

$$
A_{s t}=10 \mathrm{in}^{2} \quad \rho_{s 4}=\frac{10}{12(40)}=0.0174 \quad A_{s}=48(12)=576 \mathrm{in}^{2}
$$

$$
\rho_{\min }=0.01<\rho_{\text {st }}<\rho_{\max } \therefore \text { ok }
$$

$$
\phi \ln _{\text {max }}=0.8 \oint\left[\left(1.85 \mathrm{ft}^{k}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}\right]\right.
$$

$$
=0.8(0.7)[(1.85)(6000)(576-10)+(60,000)(10)]
$$

$$
=1952 k>1253 k
$$

\therefore ok

Column Calculations
Column Interaction

$$
\begin{aligned}
& f_{c}^{\prime}=6 \mathrm{ksi} \\
& f_{y}=60 \mathrm{ksi} \\
& 8-\# 9 \text { bars }
\end{aligned}
$$

$$
\text { Pure axial } \begin{array}{r}
f_{0}=(0.85)(6)(12 \times 24-8.0)+(8)(60) \\
\\
=1788 \mathrm{k}
\end{array}
$$

Balanced Condition

$$
\begin{aligned}
& \varepsilon y= 60 / 29,000=0.00207 \\
& c=\frac{.003}{.003+.0027}(22.5)=11.84^{\prime \prime} \\
& \varepsilon s_{1}=\frac{.003}{11.84}(11.84-1.5)=0.00262 \quad f_{s_{1}}=60 \mathrm{ksi} \\
& \varepsilon s_{2}=\frac{.003}{11.84}(11.84-8.5)=24.54 \mathrm{si} \\
& \varepsilon s_{3}\left.=\frac{.003}{11.84}(11.84-15.5)=-26.9\right) \mathrm{ksi} \\
& \varepsilon s_{4}=-60 \mathrm{ksi} \\
& M_{b}=(.85)(6)(12)(.85)(11.84)\left(12-\frac{(85)(11.84)}{2}\right) \\
&+2(60)(12-1.55+2(24.3)(12-8.5) \\
&+2(-26.9)(12-15.5)+2(-60)(12-22.5)=597.6 f t \cdot \mathrm{k} \\
& P_{b}=(.85)(6)(12)(.85)(11.84)+2(60)+2(24.5)+2(-26.9) \\
&+2(-60)=611 \mathrm{k}
\end{aligned}
$$

Punching Shear Calculations

Punching Shear Design
(2) (o) 3-6

Trip. Area $=237 \mathrm{ft}^{2}$

$$
V_{c}=4 \sqrt{6000}(118)(11.5)=420 \mathrm{k}
$$

$V_{c}=\left(2+\frac{4}{\varepsilon}\right) \sqrt{6000}(118)(1.5)=420 k \longleftarrow$ smallest

$$
V_{c}=\left(\frac{40(115)}{118}+2\right) \sqrt{6000}(118)(11.5)=619.9 \mathrm{k}
$$

$$
\begin{array}{r}
\phi V_{c}=0.75(420)=315 k<V_{u} \\
\therefore o k
\end{array}
$$

Slab Calculations

$$
\begin{aligned}
& f_{c}^{\prime}=6000 \\
& f_{x}=60 \mathrm{ksi}
\end{aligned}
$$

$$
A_{S}=0.44 \mathrm{in}^{2}
$$

\#6@12"bottom

$$
d=10.5-3 / 4-3 / 8=9.375
$$

$$
a=\frac{.44(60)}{.85(6)(12)}=0.43
$$

$$
M_{n}=.44(60)(49.375-.215)=20.15 \mathrm{At} \cdot \mathrm{k}
$$

$$
S_{\max }=\frac{12(36)}{.6(60)}=12^{n}
$$

$$
\rho=\frac{.44}{12(9.375)}=0.0039>0.0018 \therefore \text { ok }
$$

Ductility: $c=\frac{a}{\beta_{1}}=0.0<.375(9.375)$

$$
\begin{gathered}
0.8 \mathrm{C} 3.5 \therefore .0 \mathrm{k} \quad \phi=0.9 \\
\phi M_{n}=(.9)(20.15)=18.135 \mathrm{ft} \cdot \mathrm{k} \\
M_{u}=\frac{w l^{2}}{8}=\frac{[(1.2)(156)+(1.6)(100)]\left(20^{\prime}\right)^{2}}{8}=17.36 \mathrm{ft.k}
\end{gathered}
$$

$$
\partial M_{n}>M_{v} \text { \& } \partial k
$$

[^0]: Overturning Moment Level
 $1 \quad 52155.3057$

